您的位置:首页 > 吉日

科氏力质量流量计(科氏力)

科氏力质量流量计(科氏力)

流程工业中的流量计-科氏力质量流量计

科氏力质量流量计因其高精度(液体±0.1%/0.05%),多参量测量(质量流量、密度、温度等等)、适用多种介质(液体、气体、浆液)等特点,在流程工业中有着极其广泛的应用;

一、关于科里奥利力

科里奥利力(英语:Coriolis Force;简称科氏力)是一种惯性力,是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。此现象由法国著名数学家兼物理学家古斯塔夫·科里奥利发现,因而得名。

1.1生活中的科里奥利力

由于自转的存在,地球并非一个惯性系,而是一个转动参照系,因而地面上质点的运动会受到科里奥利力的影响。地球科学领域中的地转偏向力就是科里奥利力在沿地球表面方向的一个分力。地转偏向力有助于解释一些地理现象,如河道的一边往往比另一边冲刷得更厉害(地转偏向力)。

另外,信风季风、热带气旋等等地理现象的存在,也和科里奥利力关系密切。

科里奥利力和热带气旋的形成

1.2科里奥利力的应用

质量流量计让被测量的流体通过一个转动或者振动中的测量管,流体在管道中的流动相当于直线运动,测量管的转动或振动会产生一个角速度,由于转动或振动是受到外加电磁场驱动的,有着固定的频率,因而流体在管道中受到的科里奥利力仅与其质量和运动速度有关,而质量和运动速度即流速的乘积就是需要测量的质量流量,因而通过测量流体在管道中受到的科里奥利力,便可以测量其质量流量。

如下图(左)所示,截取一根支管,流体在其内以速度 V从 A流向 B,将此管置于以角速度 ω 旋转的系统中。设旋转轴为 X,与管的交点为 O,由于管内流体质点在轴向以速度 V、在径向以角速度 ω运动,此时流体质点受到一个切向科氏力 Fc。这个力作用在测量管上,在 O点两边方向相反,大小相同,为:δFc = 2ωVδm

因此,直接或间接测量在旋转管道中流动的流体所产生的科氏力就可以测得质量流量。这就是科里奥利质量流量计的基本原理。

科氏质量流量计的基本原理

早期设计的科氏力质量流量计的结构如上图(右)所示。将在由流动流体的管道送入一旋转系统中,由安装在转轴上的扭矩传感器,来完成质量流量的测量。这种流量计只是在试验室中进行了试制。

在商品化产品设计中,通过测量系统旋转产生科氏力是不切合实际的,因而均采用使测量管振动的方式替代旋转运动。以此同样实现科氏力对测量管的作用,并使得测量管在科氏力的作用下产生位移。由于测量管的两端是固定的,而作用在测量管上各点的力是不同的,所引起的位移也各不相同,因此在测量管上形成一个附加的扭曲。测量这个扭曲的过程在不同点上的相位差,就可得到流过测量管的流体的质量流量。

高准(Micro Motion)公司于1977年发明了第一台用于工业的科氏力质量流量计。1984年,EMERSON收购了高准(Micro Motion)公司。

二、科里奥利质量流量计测量管

各种型式的测量管

从上图可以看到,科氏质量流量计的测量管型式非常之多:有S 形测量管、U 形测量管、双 J 形测量管、B 形测量管、单直管形测量管、双直管形测量管、Ω形测量管、双环形测量管等。为什么呢?

2.1质量流量计结构特性

在一个测量系统中,流体质点作用在测量管上的科氏力是很小的,这给精确的测量带来很大的困难。为使测量管产生足够强的信号,就应加大科氏力对测量管的作用或在同样的科氏力的作用下增大测量管的变形。从原理上讲 Fc=2ωVM,在被测流体一定时,只有加大ω或 V,才能提高Fc。实际中ω的增加,在仪表上就需要提高振动频率和振动的振幅。(当然振动频率的提高,严重地影响测量管的寿命,而振幅的提高就需提供较大的动力。V 的增加就是增加流速(比如流量计缩颈),这样即增加了测量管上的静压,也增大流量计对整个系统的压力损失。这些对流量计本身和整个系统都是不利的。)

不同测量管的型式,在同样的振动频率的情况下,振幅是不尽相同的,因此,得到的科氏力也是不同的。下面我们选择几种常用的分别对其结构作一简单介绍。

2.1.1单直管形质量流量计

单直管的质量流量计

这种流量计的结构如上图所示,测量系统由一两端固定(法兰)的直管及其上的振动驱动器组成。①为测量管②为驱动线圈(振动驱动器)③④为传感器(负责检测测量管相位偏移)

在管中流体不流动时,驱动器使管子振动,管中流体不产生科氏力,A、B两点受力相等,变化速度相同,如下图。

当测量管中流体以速度 V在管中流动时,由于受到 C点振动力的影响(此时的振动力是向上的),流体质点从 A点运动到 C点时被加速,质点产生反作用力 F1,使管子向上运动速度减慢;而在 C点到 B点之间,流体质点被减速,使管子向上的运动速度加快。结果在C点两边的这两个方向相反的力使管子产生一个变形,这个变形的相位差与测管中流体流过的质量流量成正比。

特点:

流通能力优异压损小自排空,易于排污,易于清洗

因此,特别适用于卫生型行业、易堵塞、结晶的介质测量。

2.1.2微弯管形质量流量计

微弯管型质量流量计的内部结构

这种流量计的结构如上图所示,测量系统由一两端固定(法兰)的两根平行放置弯管及其上的振动驱动器组成。

流体流经传感器,传感器内两根平行放置的测量管反相振动,类似音叉动作。测量管在科氏力作 用下发生形变,导致测量管两端出现相位差(参见下图):• 流量为 0 时(流体静止不动),两根测量管同相振动,无相位差(1)。• 质量流量使得测量管在入口处(2)振动加速,在出口处(3)振动减速,产生相位差 (2)-(3)。

2.1.3 U形测量管质量流量计

U型管质量流量计超低温应用

U形管为单、双测量管两种结构,单测量管型工作原理如下图

电磁驱动系统以固定频率驱动 U 形测量管振动,当流体被强制接受管子的垂直运动时,在前半个振动周期内,管子向上运动,测量管中流体在驱动点前产生一个向下压的力,阻碍管子的向上运动,二在驱动点后产生向上的力,加速管子向上运动。这两个力的合成,使得测量管发生扭曲;在振动的另外半周期内,扭曲方向则相反。

测量管扭曲的程度,与流体流过测量管的值来质量流量成正比,在驱动点两侧的测量管上安装电磁感应器,以测量其运动的相位差,这一相位差直接正比于流过的质量流量。

在双 U 形测量管结构中,两根测量管的振动方向相反,使得测量管扭曲相位相差180 度。相对单测量管型来说,双管型的检测信号有所放大,流通能力也有所提高。

2.1.4 Ω形测量管质量流量计

这种流量计的结构如下图所示,驱动器放在直管部分的中间位置,当管中流体以一定速度流动时,由于驱动器的振动作用,使管子分开或靠近。

当管子分开时,在振点前的流体中产生的科里奥利力与振动力方向相反,减慢管子的运动速度;而在振点之后管中流体产生的科氏力与振动方向相同,加快管子的运动速度。当驱动器使管子靠近时,则产生相反的结果。在A、B两点的传感器可测的两处管字运动的相位差,由此可得到流过测管中流体的质量流量。

三、测量管结构对性能的影响

3.1 测量管的形状:

测量系统弹性的增加,增大了作用于振动管系统的科氏力的效应,但也增大外界机械噪声的干扰和仪表体积。测量管应尽量减少急剧弯曲,最大可能的增大测量管内径,这样可以减少压力损失。双测量管型的信噪比得到增加,流通能力也增加,被普遍采用。

3.2管壁

壁厚增加使管子更具有刚性,也增加了流动时管子的固定质量,减少了流体中夹杂气体时,由于其分布的不均匀引起比重变化对管子振动的影响,同时提高测量管耐压、耐磨性,但会降低系统弹性,影响测量的灵敏性。

3.3制造和安装

测量管的形状在制作过程应保证其对称性,在双测量管结构中应保证两根管的一致性,传感器的定位要准确,以减少测量中由于密度或粘度变化对测量结果的影响。流量质量分配的不稳定性,给测量结果的准确性带来影响。

从原理上讲,测量管所受科氏力的大小只与流体的质量流量有关,与流体密度、粘度无关。但密度的变化会带来附加的惯性力;而粘度的变化时测量管的内壁附着层不同,产生不同的边界层效应。结果引起测量管的质量分配不稳定,对测量结果的准确度带来影响。

上述文章,参考了中国计量研究院流量室,李旭老师的“科氏力质量流量计的工作原理和典型结构特性”的专业文章,在此感谢!如涉及侵权,请联系我们删除,谢谢!

DEMEILY公众号

质量流量计故障检查判断及处理——没有流量显示或无输出(一)

7. 6.2质量流量计故障的检查、判断和处理

一体式质量流量计的电流输出电路如图7-15所示。用显示仪表或DCS卡,现场到控制室的接线回路基本相同。一体式质量流量计的脉冲输出电路如图7-16所示。两个输出电路的故障检查方法基本相同。分体式质量流量计需要3组电缆,电源,信号输出,传感器/变送器连接。根据图7-15和图7-16所示,结合故障现象和问题,进行以下分析

(1)无流量显示或无输出

这种故障发生在变送器或转换器通电时,工艺管道中有流量,但仪表没有流量显示或输出信号。

①先观察仪器是否有报警,先根据报警信息进行检查处理。例如,质量流量计精度较高时,进入菜单:同时按住“滚动”和“选择”4s并松开,即可进入菜单查看

②科氏力式质量流量计有驱动线圈,驱动线圈通电后会振动因此,可以先到现场听传感器有没有嗡嗡声,摸一下传感器有没有振动感,有声音又有振动感,说明电源和驱动线圈正常。但空管时的嗡嗡声和振动更明显,而介质满管时则不明显。

到底能不能在马桶里看到科氏力的漩涡?

出品:科普中国

制作:城明辰

监制:中国科学院计算机网络信息中心

地球上,有十分之一的人眼中的日常现象其实和我们大部分人并不一样。

比如,他们看不到北极星,他们看到的台风(“旋风”)是顺时针转的,他们看到陡峭河岸往往位于河流的左侧......

因为,他们生活在南半球。与此相对的,北半球大陆的面积比南半球大得多,承载着世界上近90%的人口。

由于分属于南北两个半球,地球上的一些自然现象却呈现出相反的规律,这背后最为我们熟知的原因就是地转偏向力(科氏力)。

被误解的地转偏向力

在地理课本中,科氏力又被称为地转偏向力。

提到科氏力,许多人往往将它和地球的自旋关联起来,但实际上,纯粹的“地转偏向力”并不存在,这两个力在英文中只有一个统一的名称“Coriolis force”。

物理学中认为,包括地球在内的任何自身旋转物体,都有可能会产生科氏力。

科氏力来源于一位法国工程师——古斯塔夫▪贾斯帕德▪科里奥利(Gustave Gaspard de Coriolis),他在研究水轮旋转的能量转化时发现了它,科氏力之名也由此而来。起初,科氏力和大气以及地球的自转“八竿子打不着”,它们分别应用在各自的领域中。

科氏力最初是由科里奥利在水轮上发现的(图片来源:amatterofind)

和离心力类似,在严格的物理定义中,科氏力并不是实际存在的作用力,它是为了与当地参考系保持一致而引入的一种效应(科氏效应)。

虽然“不存在”,但由于科氏力的概念易于理解,因此被广为流传、广泛应用。

在地球上,几乎所有水平运动的物体都会受到科氏力的作用(除了在赤道上的物体),当它沿着一条直线移动时,随着距离的增加,它的轨迹逐渐发生了弯曲。

“不识庐山真面目,只缘身在此山中”,从某种意义上来说,运动物体眼中的直线是以其脚下的地面为参考系的,而在旁人的眼中,由于地球的自转,这条直线其实一开始就是一条曲线。

是不是有点难以理解?

伽利略在提出相对性原理时举过这样一个例子:假设在一个平静的湖面上,有一艘匀速直线行驶的大船,将所有的窗户都关上。那么,船上的人是否能分辨出这艘船是静止的,还是匀速直线运动的?

伽利略的轮船思想实验(图片来源:Physics Central)

结果显然不能。由于惯性的控制,船舱内所做的一切力学实验的结果和在静止的船舱里没有任何区别。

同样的,当我们身处在匀速行驶的飞机、火车以及电梯中,往往也会产生“它们是静止的”这样一种错觉。

但地球并不是一艘匀速行驶的船,它始终沿着地轴进行自转。在地球上所有物体的面前,至少摆着两套参考系,一套是以自身为原点的自身参考系,另一套则是以地心为原点,始终在自转的地球参考系。

当然,你还可以建立以太阳为圆心的太阳坐标系等其它无数个坐标系。

而科氏力作为一种惯性力,它并不是一种力,形象地说,它更像一座横跨两套参考系的桥梁。

对于在地球上静止不动的物体,它们会和上一时刻保持相同的运动状态,不论是在自身参考系还是在地球参考系,它们都处于静止状态,科氏力只能“干瞪眼”,发挥不了作用。

在地球表面(非赤道)移动的物体同样也可以选择这两套参考系,但身处不同参考系,它的运动状态却有了差异。当它笔直向前运动时,它的轨迹在自身参考系中是一条直线,而将其轨迹投影在地球表面,则是一条曲线。仿佛有一只无形的手(科氏力)把直线给掰弯了,这条曲线是由旋转的地球和自身的直线轨迹叠加而成的,这就是地球上科氏力的本来面目。

那南北半球的科氏力方向为什么是相反的?

因为地球是圆的。尽管地球在自西向东自转,但当我们处于南北半球高空中向下俯瞰(高度要足够),就会发现,在两个半球看到地球的旋转方向是相反的:北极视角逆时针旋转,南极视角顺时针旋转。这也是南北半球科氏力方向相反的原因。

南北半球相反的科氏力(图片来源:pressbooks)

高纬度两极地区的旋转角速度最大,科氏力也大。尽管赤道上也存在旋转角速度,但它正好和地球的旋转方向完全一致,赤道似乎可以是顺时针旋转,又可以是逆时针旋转,这个争议地带就成为了科氏力的禁区(一条无限细的环线)。

洗手池里的小漩涡!

当然,不仅是风、洋流和飞机会受到科氏力的影响,地球上几乎任何在水平方向运动的物体都会受到地转偏向力的作用,甚至包括马桶里的水。

马桶中旋转的水流(图片来源:Mental Floss)

在最理想的状况下,北半球的马桶、浴缸以及洗手池中的水流可以产生逆时针的漩涡,但由于科氏力极其微弱,外加喷水方向、水池的形状以及外界其他因素的干扰,旋转方向往往存在极大的不确定性。

因此,要想真真切切用肉眼观察到“科氏力在马桶中产生的漩涡”极为困难。几乎所有的书本、网站甚至老师都会说,日常所看到的水池里产生的漩涡并不是科氏力导致的。

但世界上的各个角落里,都不免有那么几个喜欢抬杠又爱钻牛角尖的科学家,而麻省理工大学的流体力学教授阿舍尔·夏皮罗(Ascher Shapiro)就是其中之一。

他认为,如果不受任何因素的干扰,即使水池再小,科氏力一定会留下属于它的漩涡,能够被我们捕捉到!

尽管许多科学家都明白这个道理,但却几乎没有人有勇气去做实验验证。因为这个似乎在家中厨房里都可以完成的简单实验,实际上存在着一些不可预知的困难。

水池中的漩涡(图片来源:technologyreview)

1962年,夏皮罗决定尝试挑战这个难题。麻省理工大学所在的纬度是42°,在流速近乎5 mm/s时,科氏力只有当地重力的3000万分之一,为了排除所有因素的干扰,他对测试的各个细节都进行了精心设计。

首先,他选择了一个直径约为1.8米,深度约为0.15米的圆柱形水池,底部中间有一个直径约为1厘米的排水孔,并用塞子进行密封。

此外,他还尽量去除水中的杂质,并调节室内的温度来控制温度的变化。而为了防止气流的干扰,他还在水池的顶部覆盖了一层塑料薄膜。

最容易忽略的一点是,水池充满水后,水体还会残留微小的运动,这甚至会存在数个小时。为了完全规避掉这部分运动的影响,夏皮罗将水池中的水顺时针搅拌旋转,以抵消科氏力在北半球产生的逆时针的漩涡。

经过24小时的沉淀后,夏皮罗小心翼翼地拔下塞子。

在前12-15分钟,他几乎观察不到任何旋转的痕迹。然而,随着时间一分一秒地流逝,在不知不觉中,漩涡逐渐显示出了逆时针的旋转状态。

在各因素被严格控制的条件下,夏皮罗最终印证了北半球的科氏力,确实可以使水池中的漩涡发生逆时针旋转。

就这?这个实验看起来难度也不大,我们好像在自家的厨房里也可以完成,但其他人为什么没有成功呢?

一方面,其他人可能忽视了水的残留运动。他们认为在水池中的水在3-4个小时之后就已经完全静止了。

另外,由于在实验开始前的十多分钟内,几乎捕捉不到旋转的痕迹,且一部分实验者设计的水池可能过小,因此还未等到漩涡出现时,水池中的水早已流失殆尽了。又或是一部分实验者在观察了一段时间后失去了耐心,而在成功的黎明前草草放弃。

为了更加严谨,三年之后,悉尼大学的学者在南半球又做了一次相似的实验,结果也出现了顺时针旋转的漩涡。至此,“水池里看不到科氏力产生的漩涡”这个广为流传的误解被彻底粉碎。

缓慢旋转的漩涡(图源:ffden)

两组实验的结果都发表在了《Nature》上,这随即引发了世界各个国家读者的质疑。在那个没有互联网的年代里,作者和读者只能通过信件来沟通。从发表开始,到十多年之后,夏皮罗还是会收到来自各地的信件,内容几乎全是关于“水池漩涡”。

今天,在麻省理工大学的档案馆中,我们仍可以看到一个褪色的文件夹,里面装满了读者发来的邮件以及夏皮罗谨慎而细致的回信。

科氏力:比你想象得更“无处不在”

科氏力并不会对我们的日常生活产生很大影响,它只有在高速运动的物体上才会充分显现出来。但对狙击手而言,高速飞行的子弹若是受到科氏力的影响,则是致命的。

实际上,狙击并非是游戏中简单酣畅的瞄准射击,超远距离的狙击也并非完全符合“目标-瞄准镜-眼睛”三点一线的原理。

国外“地平主义者”眼中的射击,他们同样否认科氏力的存在(图片来源:thetruthaboutguns)

在扣下扳机的瞬间外,狙击手更多的工作在于感受当地的温湿度、风速和风向,并考虑空气阻力、重力以及当地纬度下科氏力的影响。

当面对极其复杂的击杀任务时,狙击手甚至还会和副手(观察手)使用纸笔进行数学计算,及时调整瞄准镜,否则毫厘之差也可能导致任务的失败。

哈勃望远镜拍摄的星系照片(图片来源:bfmtv)

当然,科氏力并非只出现在地球上,任何星球都会受到科氏力的影响。因为地球的自转速度较慢,所以科氏效应并不明显。

木星是太阳系中自转速度最快的行星,其风速高达每小时610公里。在这里,科氏力“如鱼得水”,甚至可以将南北风转化为东西风。

火星通常被称为地球的姊妹星,但实际上,与地球具有最多共同特征的星球是金星,金星距离地球最近,并且二者的大小几乎相同,构造相差不大,且都有浓厚的大气层。

只是金星是自东向西进行自转(逆转)。因此,金星南半球的科氏力现象与地球的北半球完全相似。星球之间各不相同,但又遵循着相似的规律。

无辜躺枪:“遇事不决,科氏力学”

认识到了科氏力的存在后,有些人往往想把世界上所有的现象都与科氏力联系起来。比如,靠右行驶的交通规则。

他们说:北半球的汽车在科氏力的作用下倾向于偏向道路的两侧,如果左行的话,它们容易与对面过来的车辆相撞,发生车祸。

这听起来似乎很有道理,许多南半球国家也确实按照左行的交通规则。但实际上,这和科氏力没有丝毫关系。

全球有163个国家和地区以右行为交通规范,而76个国家则使用左行的规则,包括英国以及南非、澳大利亚和新西兰等前英国殖民地国家。

行驶规则不同的具体原因可以追溯到中世纪的英国骑士,他们在决斗时,右手持用武器,因此马匹靠近左侧;即使工业革命之后,马匹换成了汽车,这个传统也被沿袭了下来。而18世纪的英国号称“日不落帝国”,它也把右驾左行的交通规则也带到了各个殖民地。

左行与右行驾驶规则(图片来源:BrightSide)

此外,还有一些听起来就很离谱的言论,比如,科氏力导致北半球人的右侧鞋底比左侧磨损得更加严重。然而,这来源于个人的跑步习惯,与地球自转没有丝毫关联。

每个人鞋底的磨损纹路都是独一无二的,就像是我们的指纹。但“鞋纹”记录的是我们的走路习惯,一些刑侦人员甚至可以根据鞋底和泥地中鞋印,在人群中精准地锁定嫌疑人。

鞋底上三种典型的磨损形状(图片来源:treadlabs)

换鞋的时候,不妨偶尔把运动鞋翻过来,花几分钟分析一下你的鞋底。了解鞋底磨损的形状可以帮助你改善走路以及跑步的姿势,防止受伤,并为你购买下一双鞋提供一些指导。

参考文献:

https://www.nationalgeographic.org/encyclopedia/coriolis-effect/https://www.thoughtco.com/what-is-the-coriolis-effect-1435315https://factfile.org/10-facts-about-coriolis-effecthttps://www.technologyreview.com/2012/10/24/183079/verifying-a-vortex/https://www.thenakedscientists.com/articles/interviews/can-you-detect-coriolis-effect-your-sinkhttps://www.nap.edu/read/23394/chapter/47