本文目录一览:
魔鬼周|这些“魔鬼数字”你都经历了吗?
数九寒天风萧瑟,正是练兵好时节
武警湖南总队长沙片区特战队员们
顶风冒雨、翻山越岭、涉水奔袭
用超强的意志力
战胜一组组“魔鬼数字”突破一个个极限科目斗志昂扬的叫响 “我能行”地强军誓言
15公里武装追捕
寒冬雨夜,寒气袭人。凌晨五点,官兵还沉睡在睡梦中,一枚爆震弹,打破夜色宁静,200余名特战勇士,披肩执锐,全副武装,迅速集结。随着指挥员一声令下,各个特战小队多路出发,对逃脱的恐怖分子实施15公里武装追捕。
150斤轮胎翻滚接力
力量比拼,实力较量。看似200米不长的翻滚距离却成了特战队员眼中的“魔鬼距离”。100米、50米、10米…特战队员一次又一次的翻起轮胎向前推进,终点就在前方,胜利就在眼前,他们顾不上身体的浑身酸痛,在队友的鼓励下,继续向着终点迈进。
10分钟生死脱逃
“队长我们被蓝军俘虏了,怎么办?” 时间就是生命,双手被绑的死死的特战队员们齐刷刷的将目光投向小队长谢健长。谢健长临危不乱,现场组织大家头脑风暴,一个高效的解绳开锁法让大家达成了共识。与时间赛跑,短短10分钟内,特战队员依次逃出敌营,一次成功脱逃,又一次燃起了特战队员心中反败为胜的希望。
2小时现场烹饪
随着“魔鬼周”训练深入开展,体能消耗达到极点。导调员笑着说道是时候让大家饱餐一顿了,这不一道“硬菜”瞬时摆在了特战队员面前,两人一只活鸡,无任何厨具、辅助食材的条件下必须两小时内食用完毕,这可不是野炊,而是检验参训队员的野外生存能力。
30公里极限越野
真正的勇士敢于面对漫无终点的奔跑。30公里极限越野不仅需要充沛的体能素质,更需要特战队员强大的意志品质,身上的汗水雨水早已无法分清,唯有坚持到底才能夺取最后的胜利。
30公斤负重背囊
每天早上第一件事就是检查特战队员的背囊装具重量。据长沙支队李目焕副参谋长介绍,30公斤负重虽然在常人眼中是个“魔鬼重量”,却是部队对接实战化的“百宝箱”,官兵的野外生存、行军作战、宿营就餐都离不开它。聚焦实战化,30公斤负重这条“硬杠杠”每名特战队员必须过得去。
“魔鬼数字”的背后
是我们永不屈服的心
(撰稿摄影:徐磊 耿培智/长沙支队)
监制:温常青
主编:李 斌
责编:杨 韬
编辑:刘敏强
校对:刘粤商
投稿邮箱:hnwjhyn@163.com
魔鬼周|这些“魔鬼数字”你都经历了吗?
数九寒天风萧瑟,正是练兵好时节
武警湖南总队长沙片区特战队员们
顶风冒雨、翻山越岭、涉水奔袭
用超强的意志力
战胜一组组“魔鬼数字”突破一个个极限科目斗志昂扬的叫响 “我能行”地强军誓言
15公里武装追捕
寒冬雨夜,寒气袭人。凌晨五点,官兵还沉睡在睡梦中,一枚爆震弹,打破夜色宁静,200余名特战勇士,披肩执锐,全副武装,迅速集结。随着指挥员一声令下,各个特战小队多路出发,对逃脱的恐怖分子实施15公里武装追捕。
150斤轮胎翻滚接力
力量比拼,实力较量。看似200米不长的翻滚距离却成了特战队员眼中的“魔鬼距离”。100米、50米、10米…特战队员一次又一次的翻起轮胎向前推进,终点就在前方,胜利就在眼前,他们顾不上身体的浑身酸痛,在队友的鼓励下,继续向着终点迈进。
10分钟生死脱逃
“队长我们被蓝军俘虏了,怎么办?” 时间就是生命,双手被绑的死死的特战队员们齐刷刷的将目光投向小队长谢健长。谢健长临危不乱,现场组织大家头脑风暴,一个高效的解绳开锁法让大家达成了共识。与时间赛跑,短短10分钟内,特战队员依次逃出敌营,一次成功脱逃,又一次燃起了特战队员心中反败为胜的希望。
2小时现场烹饪
随着“魔鬼周”训练深入开展,体能消耗达到极点。导调员笑着说道是时候让大家饱餐一顿了,这不一道“硬菜”瞬时摆在了特战队员面前,两人一只活鸡,无任何厨具、辅助食材的条件下必须两小时内食用完毕,这可不是野炊,而是检验参训队员的野外生存能力。
30公里极限越野
真正的勇士敢于面对漫无终点的奔跑。30公里极限越野不仅需要充沛的体能素质,更需要特战队员强大的意志品质,身上的汗水雨水早已无法分清,唯有坚持到底才能夺取最后的胜利。
30公斤负重背囊
每天早上第一件事就是检查特战队员的背囊装具重量。据长沙支队李目焕副参谋长介绍,30公斤负重虽然在常人眼中是个“魔鬼重量”,却是部队对接实战化的“百宝箱”,官兵的野外生存、行军作战、宿营就餐都离不开它。聚焦实战化,30公斤负重这条“硬杠杠”每名特战队员必须过得去。
“魔鬼数字”的背后
是我们永不屈服的心
(撰稿摄影:徐磊 耿培智/长沙支队)
监制:温常青
主编:李 斌
责编:杨 韬
编辑:刘敏强
校对:刘粤商
投稿邮箱:hnwjhyn@163.com
美国总统为什么最怕“666”这3个数字?因为它被称作魔鬼的数字
西方人敬畏数字的历史可追溯到中世纪。“13”,“星期五”这两个数字是西方人的最忌。不但老百姓敬畏这几个数字,甚至连某些国家元首也不例外。
罗斯福
这些元首中最敬畏“13”的是美国总统罗斯福。他从1933年至1945年连任4届美国总统,是一位大明大智的人物,但谁会料到他有时竟被13这个数字弄得心绪不宁。一次他宴请客人,临入席时才发现客人是12位,连他是13位。他焦急地找来女秘书,女秘书说:“这好办。”说完挽着他的手一起走入宴会厅——她临时充当了第13位客人,连罗斯福一共是14位。这样,罗斯福才高兴地宣布宴会开始。还有一次,罗斯福因公务去外地,来到火车站才发觉这一天是13号。他埋怨自己粗心,竟在这种日子出门,便显得有些烦躁。这时已是深夜11点多钟,他忽然灵机一动,让助手去和车站商量,将发车时间推迟到0点以后,那时就是14号了。这是总统提出的要求,车站自然照办。
里根总统
除了“13”和“星期五”外,被西方人敬畏的数字还包括3个连写的“6”即“666”,这是因为《圣经》里说“666”是个魔鬼的数字。1988年,美国总统里根连任两届总统要卸任了,为今后生活打算,他在贝莱尔市的克劳德大街买了一幢别墅。付完款后手下人才发现并告诉他,别墅的门牌是666号。里根一听犹如五雷轰顶。里根惧怕“666”,自然有他的特殊理由。
美国的另一位总统肯尼迪的死就与“666”这个数字有密切关系:肯尼迪是11月22日遇刺身亡的,这个日期的4个数字加到一起刚好是“6”,那天是星期五,其英文星期五(Friday)的字母数正好是6个。凶手是在6楼向肯尼迪开枪的,又是一个“6”,里根如今也碰上了3个“6”,不过,他有总统的权力。有关部门知道里根的心事后,很快更改了别墅的门牌号。
美国总统为什么最怕“666”这3个数字?因为它被称作魔鬼的数字
西方人敬畏数字的历史可追溯到中世纪。“13”,“星期五”这两个数字是西方人的最忌。不但老百姓敬畏这几个数字,甚至连某些国家元首也不例外。
罗斯福
这些元首中最敬畏“13”的是美国总统罗斯福。他从1933年至1945年连任4届美国总统,是一位大明大智的人物,但谁会料到他有时竟被13这个数字弄得心绪不宁。一次他宴请客人,临入席时才发现客人是12位,连他是13位。他焦急地找来女秘书,女秘书说:“这好办。”说完挽着他的手一起走入宴会厅——她临时充当了第13位客人,连罗斯福一共是14位。这样,罗斯福才高兴地宣布宴会开始。还有一次,罗斯福因公务去外地,来到火车站才发觉这一天是13号。他埋怨自己粗心,竟在这种日子出门,便显得有些烦躁。这时已是深夜11点多钟,他忽然灵机一动,让助手去和车站商量,将发车时间推迟到0点以后,那时就是14号了。这是总统提出的要求,车站自然照办。
里根总统
除了“13”和“星期五”外,被西方人敬畏的数字还包括3个连写的“6”即“666”,这是因为《圣经》里说“666”是个魔鬼的数字。1988年,美国总统里根连任两届总统要卸任了,为今后生活打算,他在贝莱尔市的克劳德大街买了一幢别墅。付完款后手下人才发现并告诉他,别墅的门牌是666号。里根一听犹如五雷轰顶。里根惧怕“666”,自然有他的特殊理由。
美国的另一位总统肯尼迪的死就与“666”这个数字有密切关系:肯尼迪是11月22日遇刺身亡的,这个日期的4个数字加到一起刚好是“6”,那天是星期五,其英文星期五(Friday)的字母数正好是6个。凶手是在6楼向肯尼迪开枪的,又是一个“6”,里根如今也碰上了3个“6”,不过,他有总统的权力。有关部门知道里根的心事后,很快更改了别墅的门牌号。
千万别学数学,根本想不到如此简单的数学小问题
数学,
你这个磨人的小妖精!
上次超模君介绍了世界7大数学难题,很多模友表示连题目都看不懂。
所以,超模君今天就搜集了一些比较简单有趣的数学问题。
说完这句话,我连我自己都不相信了。
天使问题
天使问题是由英国数学家约翰·何顿·康威(John Horton Conway)提出的一个博弈论问题,他在1982年出版的《Winning Ways》中描述了天使问题(the angel and the square-eater),现在通常被认为是天使和魔鬼的游戏。
假设有一个无限大的方格棋盘,天使和恶魔就在上面玩游戏。
在游戏开始之前,天使停留在棋盘上的某一点(天使的起点),获得指定权力 K (正整数),即每一轮天使可移动的方格数。
在每一轮游戏中,恶魔都在棋盘上放置一个路障,当然,路障不可以放在天使的停留处。
有恶魔开始放置第一个路障,然后天使就沿着棋盘上的方格移动K格(纵、横、斜的相邻方格均可),移动过程可以穿过路障,但是停留处不可是路障处。
天使再次停留后,恶魔就设置第二个路障。。。
如此进行下去,如果在某一轮,天使停留在恶魔设置的某一个路障所在的方格中,恶魔就获胜;如果天使能无限地继续游戏,则天使获胜。
给出游戏规则后,康威提出了天使问题:一个能够获得足够权力的天使能赢吗?
为了激励有人来解决这个问题,康威提供了这样一个奖励方案:
①对于一个足够高权力的天使的获胜策略,奖励100美元;②不论天使的权力如何,证明恶魔获胜的策略奖励1000美元。而就在1982年,这个游戏设计者康威本人就证明了在以下两种情况下,恶魔有获胜的策略:
①当天使可移动的方格数 K = 1 时,恶魔有必胜策略;②如果天使永远不会降低其 Y 坐标,则恶魔有必胜策略。到了1996年,康威又证明了:如果天使一直增加它到起始点的距离,则恶魔有必胜策略。
康威心心念念的天使获胜策略还是没有人能提出来。。。
直到2006年,有四位数学家几乎是同时独立发现了天使的必胜策略:
布莱恩·鲍德奇(Brian Bowditch)证明了当K=4时,天使有获胜策略;奥迪瓦·克洛斯特(Oddvar Kloster)和安德拉斯·马修(AndrásMáthé)证明了当K=2时,天使有获胜策略;彼特·伽克斯(PéterGács)的证明仅适用于更大的常数。不过,超模君还无法得知康威将奖励给了谁。
Thrackle问题
Thrackle问题也是康威提出来的,被称为“康威的恐怖问题”。
在一个图中,只有一些点以及点与点之间的连线,如果每一根线条都与其他所有线条刚好只相交一次,这个图就被称为是“thrackle”。下图就是满足要求的3个thrackle:
可以看出它们的一个特点:线条数都没超过顶点数。
而康威的Thrackle问题就是:是否存在线条数大于顶点数的thrackle?
有趣的是,像上面介绍的天使问题一样,康威也悬赏了1000美元来征解。(动不动就悬赏
)
只不过,到目前为止,还没有人能找得到线条数大于顶点数的thrackle,而目前已知的最好的结果是,一个 thrackle 的线条数不会超过顶点数的167/117。
下图就是线条数和顶点数相同的一个thrackle(6个点、6条线),而此时想要在两个点之间添加一条线,使得这条线与其他所有线只相交一次,是不可能的!(各位模友可以尝试一下)
吉尔布雷斯猜想
1958年的一天,美国数学家吉尔布雷斯(Norman L. Gilbreath)闲来无事,在餐巾纸上将一堆素数从小到大排成一行,然后又很无聊地将素数两两相减(相邻的两个素数,大的减去小的),得到第二行数,继续很无聊地减下去。。。
然后,见证奇迹的时刻到了!
吉尔布雷斯发现了一个规律:似乎从第二行开始,以后各行总是以1开头!
由此,吉尔布雷斯猜测:不论这个过程进行多久,上述结论总是正确的。并在1958年的一个数学交流会上提出了这个猜想,即吉尔布雷斯猜想。
第二年,吉尔布雷斯的两个学生凯尔格洛夫(R.B.Killgrove)和拉尔斯顿(K.E.Ralston)通过验证第63419个素数之前的所有素数而支持了这个猜想。
1993 年,数学家安德鲁·奥利兹科(Andrew Odlyzko)对 10 000 000 000 000 以内的质数( 346 065 536 839 行)进行了检验,规律仍然遵循吉尔布雷斯猜想。
到目前为止,人们还没发现可以推翻吉尔布雷斯猜想的反例。
利克瑞尔数
在了解利克瑞尔数之前,我们先讲讲回文以及回文数。(palindrome number)
“回文”(palindrome)是古今中外都有的一种常见的修辞手法和文字游戏,是指“顺着读和反过来读都能读通的句子”,古人喜欢用这种方式来体现两种食物之间的联系,甚至是得到相矛盾的结果。
例子:①人人为我,我为人人。②《易经.系辞》:日往则月来,月往则日来。③英语中最著名的一个回文,是拿破仑被流放到Elba岛时说的一句话:Able was I ere I saw Elba.(在我看到Elba岛之前,我曾所向无敌。)而在数学中,也存在具有这一特征的数字,即“正读反读都一样”的自然数,称为“回文数”,0是最小的回文数。
关于回文数的获取,有这样一个算法:
第一步:随机找一个十进制的数(如46),把它倒过来变成另一个数(64),再把这两个数相加(46+64=110),得到一个和数(110);第二步:将这个和数倒过来(011),再与原来的和数相加(011+110=121),又得到一个新的和数;按照这个步骤,一步步往下算,直到得到一个回文数为止。(例子中的121已经是一个回文数,如果接着算下去,还会得到更多的回文数。)既然方法如此简单而且有趣,人们纷纷加入这个回文数的探索之旅。
不过,人们慢慢发现,并不是所有数都像上面所举的例子那样只需要2步或者几步就可以得到一个回文数,数字89的“回文数之路”就非常漫长,足足要经过24步才得到第一个回文数:8813200023188。
随着计算机的发展,人们已经开始通过编写程序来获得回文数。
然而,有这样一个神奇的数字:196,专家表示打死都得不到回文数,因为他们按照上面的步骤用计算机进行了数亿次的迭代,还是无法得到一个回文数,像这种数,就称为“利克瑞尔数”(Lychrel Number)。
而现在的推论,196只认为是第一个可能的利克瑞尔数,因为还没得到任何有力的证明。
超模君表示不会轻易。。。
马上动笔算了起来!
196+691=887
887+788=1675
1675+5761=7436
7436+6347=13783
。。。
“超级数学建模”(微信号supermodeling),每天学一点小知识,轻松了解各种思维,做个好玩的理性派。60万数学精英都在关注!
美国总统为什么最怕“666”这3个数字?因为它被称作魔鬼的数字
西方人敬畏数字的历史可追溯到中世纪。“13”,“星期五”这两个数字是西方人的最忌。不但老百姓敬畏这几个数字,甚至连某些国家元首也不例外。
罗斯福
这些元首中最敬畏“13”的是美国总统罗斯福。他从1933年至1945年连任4届美国总统,是一位大明大智的人物,但谁会料到他有时竟被13这个数字弄得心绪不宁。一次他宴请客人,临入席时才发现客人是12位,连他是13位。他焦急地找来女秘书,女秘书说:“这好办。”说完挽着他的手一起走入宴会厅——她临时充当了第13位客人,连罗斯福一共是14位。这样,罗斯福才高兴地宣布宴会开始。还有一次,罗斯福因公务去外地,来到火车站才发觉这一天是13号。他埋怨自己粗心,竟在这种日子出门,便显得有些烦躁。这时已是深夜11点多钟,他忽然灵机一动,让助手去和车站商量,将发车时间推迟到0点以后,那时就是14号了。这是总统提出的要求,车站自然照办。
里根总统
除了“13”和“星期五”外,被西方人敬畏的数字还包括3个连写的“6”即“666”,这是因为《圣经》里说“666”是个魔鬼的数字。1988年,美国总统里根连任两届总统要卸任了,为今后生活打算,他在贝莱尔市的克劳德大街买了一幢别墅。付完款后手下人才发现并告诉他,别墅的门牌是666号。里根一听犹如五雷轰顶。里根惧怕“666”,自然有他的特殊理由。
美国的另一位总统肯尼迪的死就与“666”这个数字有密切关系:肯尼迪是11月22日遇刺身亡的,这个日期的4个数字加到一起刚好是“6”,那天是星期五,其英文星期五(Friday)的字母数正好是6个。凶手是在6楼向肯尼迪开枪的,又是一个“6”,里根如今也碰上了3个“6”,不过,他有总统的权力。有关部门知道里根的心事后,很快更改了别墅的门牌号。